North America

Talking Trade With Trudeau and Trump

NAFTA stands for the North American Free Trade Act, but President Trump does not. After campaigning on a promise to repeal the Act, then adapting his position to that of merely supporting the Act’s renegotiation, Trump recently announced that he would no longer tolerate the status quo arrangement for American imports of dairy and forestry products originating from Canada.

Proposing, on April 24, to add a 24-percent tariff on US imports of Canadian softwood lumber, Trump kept up the pressure on Canada the following day, tweeting “Canada has made business for our dairy farmers in Wisconsin and other border states very difficult. We will not stand for this. Watch!”.

Watch! indeed: the value of the Loonie fell sharply the week of the tweet, as investors worried how Canada will fare when it comes to the broader renegotiation of NAFTA Trump continues to promise.

Trump’s targeting of Canada in this way is not likely to have been random. Nor was it entirely economic in its intention. Rather, Trump brought up the issue in order to prove his anti-NAFTA bona fides to his political base, yet in a way that manages to avoid the hairier subjects associated with NAFTA’s other signatory, Mexico, such as immigration, racism, or The Wall.

Trump has admittedly been careful to direct attention to goods of lesser importance, like dairy products and softwood lumber, rather than to Canada’s key exports of oil (from Alberta) and auto parts (from Ontario). Still, he has been far tougher on Canada—at least in his rhetoric—than has any other recent president. To use a Trumpian phrase: Canada has now been put on notice.

Obviously, this may worry Canada’s Prime Minister, Justin Trudeau. Elected with a rare majority government in 2015, Trudeau’s “political honeymoon” now finally seems to be nearing its end. The NAFTA/Trump issue was just one of four indications of this to occur this spring. The other indications were the election of a new federal opposition leader, Conservative Andrew Scheer, on May 28; the expectation of an NDP-Green minority government forming following an election in British Columbia in May; and the continuing decline in oil prices that has occured thus far in 2017.

Of these, the price of oil is likely the most troubling sign for the Canadian economy, and by extension for the approval ratings of Trudeau. West Texas Intermediate crude oil prices crashed in mid-2015, hitting lows of 26 dollars a barrel in February 2016 but staying mostly within a range of 40-55 dollars since then. They began 2017 at 54 dollars, and remained there until mid-April. However in recent weeks they have fallen again, so that as of this writing (June 21) they are at just 43 dollars a barrel. The Western Canadian Select oil price, which is the price that Canadian oil tends to sell at, is barely over 30 dollars. This does not bode well for the Canadian economy.

The biggest political news in Canada, meanwhile, has been the victory of the new Conservative leader, Andrew Scheer. Scheer narrowly (and quite unexpectedly) defeated Quebec MP Maxime Bernier at the Conservative Party convention, and so will now replace the party’s interim leader Rosa Ambrose as Canada’s leader of the opposition.

The impact of Scheer’s victory is likely to be twofold. First, Trudeau now finally has to face a real political opponent in parliament, rather than a mere interim leader as he has faced until now. This may draw some media attention away from political narratives created by Trudeau, instead giving his Conservative opponents some more air time. Indeed, Trudeau may now no longer be the only golden boy in Ottawa. Scheer is just 38, seven years younger than Trudeau.

The second impact of Scheer’s victory is that, unlike Trudeau, Scheer is not from Quebec. Bernier, who had been expected to beat Scheer, would have been the first Conservative leader from Quebec since Brian Mulroney, who was Prime Minister from 1984 (the year Trudeau’s father left office) until 1993.

In every election since then, the Conservatives have trailed behind the Liberals, NDP, and Bloc Quebecois in Quebec. This is not a trivial fact: Quebec is home to 23 percent of Canada’s population, and tends to vote for home-grown politicians. Given that Quebec has tended to be anti-Conservative, and western Canada pro-Conservative, Scheer’s victory over Bernier could mean that the next national election in Canada will be decided in Ontario. This fact could influence Trudeau and the Liberals during NAFTA negotiations, given that Ontario depends far more on trade with the United States than do any of the other Canadian provinces (apart from New Brunswick).

The month of May also saw a shakeup in Canadian politics at the provincial level. In British Columbia, the third largest of Canada’s ten provinces, the incumbent Liberal government failed by just one seat to hold on to a majority government. The NDP and Green parties have now announced that they plan to form a minority government in BC instead. This announcement has already had consequences for Trudeau, as the new provincial government is not expected to support the planned expansion of Kinder Morgan’s Trans Mountain pipeline from Alberta to BC’s coast.

Indeed the BC election, which was held on May 9, just a few weeks before Kinder Morgan held what it had expected to be the fourth largest IPO in Toronto Stock Exchange history, caused Kinder Morgan’s stock to plunge. If Alberta cannot export its fossil fuels to world markets via BC, then it will probably remain more dependent on sending them to refineries in the United States. Obviously this would be likely to reduce Canada’s leverage in any trade negotiations with the US.

If and when these negotiations do occur, it is difficult to know what the details of any new NAFTA agreement will be. Canada is obviously at a disadvantage relative to the US when it comes to trade negotiations. Not only is the Canadian economy much smaller than that of the US, and more dependent on trade with the US than the US is dependent on trade with Canada, but Canadian politics are also—contrary to popular wisdom—more internally divided than those of the US.

To give only one relevant example of this, there is the division between Canada’s provinces in to the extent to which they depend on US trade. The value of Ontario’s trade with the US is equal to an estimated 49 percent of Ontario’s GDP. In contrast, in Canada’s other major provinces — Quebec, BC, and Alberta — trade with the US accounts for just 23, 16, and 31 percent of GDP.

With these figures varying so widely, it could be difficult for Trudeau to present a unified front during negotiations. On the other hand, the political interests of the US are global in scope, so the US cannot afford to spend as much of its political capital haggling with Canada as Canada can afford to devote to haggling with the US. Thus it is always difficult to know which country holds the more leverage in the Canadian-American relationship.

What is obvious, though, is the importance of the relationship. Canada may appear small when compared to its southern neighbour, but it is the tenth largest economy in the world, and has growth prospects that out-rival most other wealthy economies. The US and Canada have the second largest trading relationship in the world, trailing only (for now) trade between the US and China.

Now that they are both finally settled into office, it will be fascinating to watch how these two countries’ utterly different leaders, Trudeau and Trump, will steward and steer this relationship going forward.

Standard
North America

Robots and NHL Expansion

Winnipeg and Las Vegas, the two newest NHL franchises since Minnesota and Columbus joined the league in 2000, have one thing in common: nobody lives near them. Apart from much larger, regional capitals, like New York City or Phoenix, both Winnipeg and Las Vegas account for a far bigger share of their state or province’s total population than do any of the other cities with NHL teams.

expansion2.png

In other words, both Winnipeg and Las Vegas are located pretty much in the middle of nowhere.

In spite of this, Winnipeg and Vegas represent opposing strategies to adding new teams to the NHL. Returning a team to Winnipeg was an example of what we will call a short-distance strategy. It was (to state the obvious) intended to capitalize on hockey fans, a.k.a. Canadians, who live in Winnipeg. As Winnipeg had been the largest Canadian city without a team, and Manitoba the largest province without a team, bringing the Jets back was an obvious decision for the NHL to make.

The league does not, however, expect many people at Jets games to have come from afar. Even outside of Winnipeg’s metro area, most Manitobans live not far from the city. Winnipeg’s neighbours, moreover, are distant andd sparsely populated. Saskatchewan has just 1.1 million people; its largest city, Saskatoon, is 710 km away from Winnipeg. Calgary and Edmonton are 1200 km from Winnipeg. Fargo is 330 km to Winnipeg’s south, Minneapolis 615 km. And almost nobody lives in northwestern Ontario. Toronto and Ottawa are more than 1700 km away. Manitoba cannot rely much on its neighbours to buy hockey tickets.

Las Vegas is following the opposite strategy: a long-distance strategy. It hopes to attract fans (aka gamblers, tourists) from hundreds or thousands of kilometres away: from Canada, the rest of the United States, and even overseas.

Even the Vegas locals, who the NHL hopes to convert into hockey fans, are dependent on long-distance tourism. Without tourism, Las Vegas’ economy would dry up and force many of the locals to leave (or at least, to spend less money on hockey tickets). This the Las Vegas Golden Knights would not be able to afford. Once the Oakland Raiders move to Las Vegas in 2019, Nevada will have the smallest population per each of its major sports franchises of any state or province—with only one exception: Manitoba.

expansion.png

Pittsburgh and Nashville  

This year’s Stanley Cup contenders, Pittsburgh and Nashville, are very different than Winnipeg and Vegas. For one thing, neither are the largest cities in their states. The Greater Nashville metro area is home to only an estimated 27 percent of the population of Tennessee; Pittsburgh’s metro area is home to just 13 percent of Pennsylvania’s population. Pittsburgh was fifth from the bottom on both of the blue graphs above.

Nashville's Nearest Neighbours.png

The Nashville Predators, and its nearest fellow teams in every direction—plus the Thrashers, which left Atlanta to become the Jets in 2011. 

For Nashville, not only are the Predators the only team in Tennessee, they are also surrounded by five states with no NHL teams: Georgia, Mississippi, Arkansas, Alabama, and Kentucky. Tens of millions of people live within a few hundred km of Nashville, and none of them have their own teams.

Pennsylvania Teams.png

Pittsburgh too is in a region with a large population yet relatively few hockey teams—albeit not nearly to the same extent as Nashville. This region includes Ohio, which has no team north of Columbus, and the Virginias, which have no teams at all. Most importantly, it includes part of southwestern Ontario. Pittsburgh is located closer to the Canadian border than any other American team apart from Buffalo or Detroit.

Pennsylvania is also one of just two states that has exactly two NHL teams. (The other, Florida, relies on tourists and snowbirds, like Las Vegas will). This is a useful arrangement, creating an intrastate rivlary in which western Pennsylvania can cheer for the Penguins and the east for the Flyers.

Golden Knights or Goldilocks? 

Pittsburgh and Nashville are both examples of a medium-distance strategy for NHL expansion. Whereas Vegas will rely on fans jetting in from thousands of km away, and Winnipeg relies on Manitobans keeping the seats full, the Predators and Penguins can both — in theory, at least — attract fans or ticket-buyers who live within tens or hundreds of km of their arenas.

The question is however: which strategy is best?

The reason I bring this up is, as the title of this article indicated, robots. If Sillicon Valley is right, and technologies like autonomous cars really are coming just around the corner, might this make a medium-distance strategy wiser? Would it make the recent expansions to Winnipeg or Las Vegas ill-advised? After all, an autonomous vehicle could make driving tens or even hundreds of km to come home from a game—at night, in the winter, on a rural highway, after having drunk a beer or two earlier—safe and easy. This might increase dramatically the distance that fans are prepared to travel to go to a game.

A medium-distance strategy for future NHL expansion should, in general, prioritize cities that are in Canada or near the Canadian border. Such a team would allow Canadian hockey fans could come to games without having to travel too far a distance. Such cities might include Quebec City, Hamilton, Cleveland, Seattle, Milwaukee, or perhaps even Halifax, Saskatoon, London (in Ontario), Portland, or Toledo.

Most of these cities could not support a team without some new major advance in transportation technology, such as autonomous cars: the number of hockey fans who live in them is simply too small. Some may not be able to support a team even with robot cars. Halifax, for example, has a mere 400,000 inhabitants. It would need to draw in many fans from other Maritime cities to become viable.

While Quebec City and Hamilton are arguably the most sensible additions the NHL could make if following a medium-distance strategy, Seattle is I think the most intriguing one. Seattle is of course a sizeable city in its own right; it accounts for 50 percent (by metro area) and 9 percent (by municipality) of Washington’ population—middle-of-the-pack figures for cities that have NHL teams. Yet Washington as a state has only two major sports franchises (the Seattle Seahawaks and Seattle Mariners) for 7.2 million people. Along with neighbouring Oregon, Idaho, and British Columbia, the Pacific Northwest has only four teams (Seahawks, Mariners, Trailblaizers, and Canucks) for 17.5 million people. It used to have six, but the Supersonics and Grizzlies moved away.

quebec expansion

One reason the Pacific Northwest has so few sports teams per capita is its mountainous terrain. The mountains make land expensive, raising the cost of an arena. They also make driving tricky and limit the number of highways available, creating traffic. This makes it difficult for fans from other cities to drive to and from Seattle, Portland, or Vancouver to take in a game. For a Seattle NHL team this would be an especially important challenge, as the team would want hockey fans to visit from Canada. It is 236 km from Vancouver to Seattle, and 278 from Portland to Seattle. It is just 115 km from Victoria, BC’s capital city (with a population of 368,000), but only as the crow flies.

Pacific Northwest .png

Autonomous cars could, perhaps, help the Pacific Northwest overcome these challenges. They might do so by allowing an arena to be built further from Seattle’s expensive downtown core, or by allowing an arena to have much smaller parking lots (and therefore to occupy less expensive real estate) or by making it easier to drive hundreds of km through the region’s rugged and rainy terrain.

On the other hand…

Of course, it is easy for me to just say “autonomous cars” and then try to make up a cool-sounding argument around it. But that does not mean in any way that my argument is a good one.

In this case, it may instead be that a short-distance or long-distance approach, of the Winnipeg or Las Vegas variety, really will be better than a medium-distance one. This is something that the league should, I think, try to determine for itself.

If a short-distance strategy is determined to be best, then the obvious choice for expansion would be to put a second team in Toronto. Even with two teams, the municipality of Toronto would have approximately 1.4 inhabitants per NHL team and 700,000 inhabitants per “Big 4” sports franchise. In contrast, the municipalities of of Hamilton and Quebec City are home to only around 500,000 people each.

The Greater Toronto Area (not even including nearby Hamilton or Kitchener-Waterloo) would have 3.2 million people per NHL team and 1.6 million per Big 4 team were it to add a second NHL franchise. The Greater Montreal Area would have just 2 million people per team were it to do so.

A long-distance strategy, on the other hand, might focus on cities in the south, where hockey-loving snowbirds could flock. This could mean a first NHL team in one of the southern states without any, or a second team in Texas, or a third attempt at a team in Atlanta, or maybe even a fourth team in California.

Indeed, the most recent round of NHL expansion in southern cities was during the 1990s, when, perhaps not incidentally, the cost of travel was cheap and the Canadian dollar was weak, as oil prices were at an all-time low. San Jose, Anaheim, Miami, Tampa Bay, and Dallas all got teams during 1991-1993 (Ottawa also got a team in 1992), while Phoenix, Denver, Raleigh, Nashville, and Atlanta got teams during 1995-1999.

In contrast, the three since then have been northern: Columbus and Minneapolis in 2000, then Winnipeg in 2011. A long-distance approach, however, might be less friendly towards northern cities—particularly far-northern cities, such as Winnipeg, Quebec City, or Saskatoon. It might worry that too many Canadians will flee the cold and dark of winter to seek the bright sun of the south.

Standard
North America

It’s Finally Time For A Toronto Ziggurat

It’s true that pyramids have fallen out fashion in recent millennia. All of the pyramids that have been constructed  in modern times are shorter than the Great Pyramid of Giza, which was built four and a half thousand years ago.

The two largest of these are the Memphis Pyramid (Memphis, Tennessee, that is), where the Grizzlies NBA team played from 2001-2004, but which has since been turned into a giant Bass Pro Sports Shop; and Las Vegas’ Luxor Hotel and Casino, the most vice-ridden pyramid this side of Pyongyang.

At 98 and 107 metres, the tips of these two American pyramids are both taller than the roof of Toronto’s Skydome (which, for purposes of comparison, is 86 metres tall). But both are still much shorter than Giza’s, which is 139 metres.

The next tallest modern pyramid, which finished construction in 2000 in Khazakstan’s built-from-scratch capital city Astana, is 77  metres tall. Other notable modern pyramids include California’s Walter Pyramid, a 5,000-seat sports arena on the campus of Long Beach State University that is 58 metres tall; the Pyramid of Kazan, the largest recreation facility in Russia at 30 metres tall; and museums like the Nima Sand Museum in Japan or the Louvre Pyramid.

Pyramid Schemes 

Pyramids have three significant advantages over other buildings–but also a key flaw, which has outweighed these advantages.

The advantages of pyramids are that they are durable, climbable , and do not obstruct city skylines to the same extent that a rectangular or dome-shaped building of equivalent height would.

In spite of these advantages, pyramids have a flaw, which has relegated them to serving mainly as a home for the spookily intact remnants of once-great kings (like Tutankhamen, or Vince Carter). Their flaw is simple: most of their indoor space lacks good window access. Windows are sort of a deal-breaker for modern humans. This is why you do not see many pyramid-shaped residential condos, but instead only entertainment facilities or Bass Pro Shops.

You don’t need to be a brain surgeon to know that one thing pyramids and ziggurats could be good at is storing things. A ziggurat could be ideal for this:  it could serve simultaneously as a storage facility (on the inside) and a public gardens (on the outside).

babylon gardens

Hanging Gardens of Babylon (fictional rendering)

This assumes, however, that cities are actually in need of  large new storage facilities. For post-industrial cities like Toronto, this may not be the case. If  Toronto were to build a large ziggurat, what would be stored inside of it?


Robots!

This is where the introduction of autonomous cars could, maybe, make things interesting.

Though we don’t know what the future of rush hour traffic jams or weekend traffic lulls will be, it is plausible that in the future there will at times be an excess capacity of cars in Toronto, numbering in the tens or even hundreds of thousands. Since autonomous cars will be able to drive themselves, this raises the question of where the best place for them to go at such times would be.

One possibility is to keep doing what we do now: leave cars parked all over the place. It is probable, I think, that this is what we will do — and that’s okay. Yet it is also likely that we will seek to do this less and less often, given that any space occupied by parked cars could be better used as a green space, commercial space, residential space, extra lane for driving, etc.  Leaving autonomous cars parked all over the city would not seem to be sensible or necessary.

Another option is to build more underground parking lots. Today less than one percent of the city’s parked cars are in underground lots; it would seem only natural that this number will increase as a result of autonomous cars. Such cars would not mind squeezing themselves down narrowly winding ramps to reach cramped parking spots in the bowels of the earth.

Still, building underground lots is not cheap. As you dig further and further down, construction prices tend to rise sharply, as a result of the need to keep out groundwater, prevent surrounding buildings from being destabilized, and lift earth high and higher to get it out of the hole you’ve dug.

But What About That Ziggurat? 

Thus, we are left with the alternative of having excess autonomous cars drive themselves into vertical parking lots. In some cases, having these buildings be ziggurats could work best, given that they are durable, do not block skylines much, and can double as a Hanging Gardens.

The best place to put a ziggurat in Toronto could be the Exhibition. The Exhibition has enough room for a large building, and would make the ziggurat a part of the Toronto skyline. From the Exhibition Ziggurat’s Hanging Gardens, there would be a clear view of the lake, the revitalized Ontario Place island, and CFL or MLS games being played at BMO field. (Also, concerts being played at Molson Amphitheatre would be audible). It would be accessible by car (as it would itself be a gigantic parking lot) as well as by GO Train from Union.

Escalatortonowhere

Indeed, instead of a crazy escalator to nowhere, Toronto could use the ziggurat to have a highway to nowhere: having the Gardiner Expressway end closer to Exhibition rather than extending all the way to the DVP.

As a massive parking lot for shareable autonomous cars, the Exhibition Ziggurat could help make the removal of the downtown Gardiner a workable possibility, by allowing commuters to drop off their cars at Exhibition Station in order to transfer to the train or bus. Similarly, at times when Union Station is overcrowded, the Ziggurat could help allow commuters to get off the train at Exhibition Station in order to switch to an autonomous car.

 

toronto ziggurat exhibition

Given that there are several marinas next to the Exhibition, it could perhaps become possible even that cars could go to and from the ziggurat by being carried by autonomous boats on Lake Ontario. This way, cars could at certain times be picked up or dropped off at various points along the city’s waterfront, using the lake to avoid downtown traffic. In theory at least, excess cars could even be delivered to St Catharines via boat, using the lake as a shortcut to reduce the distance between Toronto and Niagara from 130 km (via the QEW) to just 50 km.

If you want to get even crazier, you could do as the Egyptians did and built not one pyramid, but several. You could turn Downsview Park into a post-modern Necropolis, full of  hanging gardens and autonomous car parking spaces, with easy access to the 401, the Allen, and Sheppard.

If Egypt is any indication, such an investment could at least pay off in the the very, very long run.

 

 

 

 

 

 

 

 

 

 

 

 

Standard
North America

On Politics and the Weather…and Bike Lanes, in Toronto

I tend to agree with those who say that the ideal city would have both right-of-way transit lines and separated bike lanes on every major street. But I also recognize that this is not politically viable. Too many suburban voters are against it. Urbanites have enough clout to get bike lanes or transit, but not necessarily both.

For this reason, I think it would be best to advocate for transit only, leaving the issue of bike lanes to the side until the transit fight is won. Bike lanes are great too of course, but not nearly as useful as transit can be.

However, I also recognize that even this is not politically viable. There are too many bike enthusiasts who will not delay their push for better bike lanes. For these bike enthusiasts and transit advocates to present a unified front in their negotiations with suburbanites, they must first reach a compromise among themselves.

The compromise could be this: a hybrid transit/bike lane, which changes functions depending on the weather.

It would work something like as follows. On days when the weather is expected to stay within a range of, say, 0-30 degrees celcius, and not rain too much, cyclists will get to have a separated bike lane that is so wide that it will actually have two bike lanes within it: a passing lane and a slower lane. On these days, Toronto would become ideally the most bike-friendly city in North America.

However on days when the weather is expected to be too cold, hot, or rainy, bicylists will not be allowed to bike on major roads at all. Instead, the bike lanes would be used as a right-of-way bus lane.

Of course, there would be winners and losers in this plan, as in any political solution. The losers would be ultraenthusiastic cyclists, the people who love to brag about how they bike to work even in January.

The winners would be everybody else.

Standard
North America

Because 12 is a Magic Number (On Numerology and Public Transit)

The number 12 has played a key role in human culture, showing up in places as diverse as the hours of the day, the tribes of Israel, the disciples of Christ, the jury of your peers, the major gods of Olympus, the inches in a foot, the Chinese Zodiac, the Latin Zodiac, or the egg-carton.

One reason for this is that 12 is divisible in three different ways: by 12 and 1, by 6 and 2, and by 4 and 3. Not until 18 (another significant number, in both Hinduism and Judaism) is a number again divisible in three ways. This is also the root of 13’s bad luck: it’s a prime number, divisible only by itself and one. 13 throws off 12’s groove.

Numerology and Public Transit? 

As in the case of the clock, calendar, and egg-carton, 12’s divisibility could perhaps be put to practical use in public transit.

Imagine for a moment that a road were to have three different bus lanes in each direction. In one of the directions, busses on one of the lanes would make stops every 200 metres, on another lane every 400 metres, and on the third lane every 1200 metres.  In the other direction, busses on one lane would make stops every 300 metres, on the second lane every 600 metres, and on the third lane every 2400.

The result of this would be that busses on all six bus lanes would arrive at the same place every 2400 metres. In addition, busses on the 200 metre and 400 metre lanes would arrive at the same place every 400 metres, and busses on the 200,300, and 600 metre lanes would all arrive at the same place every 600 metres. Five of the six lanes — the 200, 300, 400, 600, and 1200 — would all arrive at the same place every 1200 metres. Lots of opportunities for passengers to transfer easily from one lane to another might therefore be created by such a transit system.  Ideally, this would make the system both efficient and useful.

Of course, you’ve probably already spotted the problem with this plan: roads aren’t wide enough for six transit lanes!

In order to have a transit-by-the-dozen plan like this, you would need either narrower vehicles or wider roads.

In the case of wider roads, the solution is obvious: use highways. The challenge then, however, would be how to get the passengers to and from those highways. This may not be viable today — or at least, not politically viable — but it could perhaps become so with the advent of autonomous or semi-autonomous cars.  Autonomous vehicles could take passengers to and from transit stops located in or adjacent to the highways.

The same might be said of narrower vehicles. Narrow, one-seater autonomous or semi-autonomous cars might allow main streets to create six narrow lanes — three in each direction — to be used for a transit system. Not only would the vehicles themselves be narrow, but they may also require less space between lanes.

But, if anywhere, it is probably on highways, not ordinary roads, where such a plan might actually have potential. Highways are so wide that, rather than have six transit lanes in total, it could be possible to have twelve: a 200, 300, 400, 600, 1200, and 2400 in each direction.  You could  even name the lanes after the Zodiac.  You could then give a tourist directions like “take the Taurus for three stops, then swich to the Gemini.”

Alternatively, you could use only one lane in each direction, but still have different busses using the lanes stop 200,300, 400, 600, 1200, or 2400 metres apart. This would make the system possible on normal roads, with normal sized vehicles, rather than only on wide highways or with narrow autonomous cars.

This is all enormously speculative of course. I don’t expect to see it happen, and am not sure it would even be desirable.

I guess we’ll have to consult an astrologer to find out.

Standard
North America

Waterworld: 10 Cities To Watch On Lake Ontario’s Southern Shore

Living next to a river, lake, or sea can have both benefits and drawbacks. Some of the benefits include access to shipping, the ability to relax on a beach or a boat, and the fact that large bodies of water tend to have a temperate effect on their local climates, keeping their cities cool in summer and warm in winter. Some of the drawbacks include being an impediment to road travel (you usually can’t drive a car on water), flooding, and Snowbelts.

While most US cities continue be located next to major rivers or bodies of water, these cities have tended to sprawl away from their bodies of water in recent decades, forming suburban areas further inland, such as Akron, Ohio or Warren, Michigan. In addition, many of the fastest-growing American cities have been in inland areas, like Phoenix, Atlanta, Las Vegas, or Austin. Water has taken a backseat.

In this article we will look briefly at ten places — 4 in Canada, 6 in the US — near Lake Ontario that have been shaped by water, and that might soon experience a revival because of water.

1. Hamilton 

Hamilton.png

The city of Hamilton has the only significant natural harbour in the western half of Lake Ontario. Back in 1870, when water transportation was still more important than it is today, Hamilton’s population was half as large as Toronto’s. Hamilton’s land transportation, however, has been limited by its harbour, as well as by the Niagara Escarpment. Thus Hamilton has not been able to expand (or sprawl) in the way Toronto has. Hamilton’s population today is only 10-15 percent as large as Toronto’s.

Niagara_Escarpment_map

The Niagara Escarpment

 

2. Niagara-on-the-Lake 

Niagara on the Lake.png

Niagara is shaped by water — and not just because of the nearby Falls. It is an example of what we will call a “crow-flies city”: it is far closer to Toronto as the crow flies than it is via land. In fact it is only 48 km from downtown Toronto via Lake Ontario. To put that it perspective, Barrie is 85 km away from downtown Toronto, and Hamilton is 60 km from downtown Toronto. Via land, however, Niagara-on-the-Lake is roughly 25 km from downtown Toronto. As such, if crossing Lake Ontario were to become easier, Niagara-on-the-Lake may benefit. In a forthcoming article we will discuss whether or not this is likely to happen.

notl_aerial.jpg

The Niagara River meets Lake Ontario

3. Fort Erie  

Fort Erie.png

While the town of Niagara-on-the-Lake (population 18,000) and its neighbouring cities St Catharines (population 130,000) and Niagara Falls (pop. 80,000, plus 50,000 more who live on the US side of the city) are crow-flies cities vis-a-vis Toronto, via Lake Ontario, the small city of Fort Erie (population 31,000) is a crow-flies city vis-a-vis Buffalo, via the Niagara River. Although the Peace Bridge crosses the river, it tends to be crowded with border traffic, and it is an out-of-the-way route for the southern areas of Fort Erie. So, if it becomes easier to cross the 3 km-wide river border between Fort Erie and Buffalo’s harbour, Fort Erie may benefit.

tc.jpg

The Peace Bridge


4. Youngstown  

Youngstown .png

Niagara is a crow-flies city via lake, and Fort Erie via river, but the village of Youngstown (population 2000) in upstate New York is both.

Like Niagara-on-the-Lake, Youngstown is less than 50 km from downtown Toronto via Lake Ontario, but more than 125 km from Toronto via land. In addition, the Niagara River blocks Youngstown from the nearby town of Niagara-on-the-Lake and city of St Catharines. As the crow files, Youngstown is only 1 km from Niagara-on-the-Lake and 18 km from downtown St Catharines. However because theres is no bridge over the Niagara River north of Lewiston, Youngstown is 23 km from Niagara-on-the-Lake by car and 28 km from St Catharines. Youngstown would benefit from easier crossings of the river, the lake, and the US-Canada border.

The nearest US city east of Youngstown, meanwhile, is Lockport (population 21,000), 30 km away next to what was once America’s most important canal, the Erie Canal.

ErieCanalMap.jpg

The Erie Canal


5. Buffalo 

buffalo

Buffalo too owes its significance to the Erie Canal. Indeed, prior the modern era of plentiful railways and highways, the canal allowed Buffalo to become America’s 10th largest city in the 1860s — and the fourth largest among cities without an ocean port. Buffalo remained the fourth largest city in the US without an ocean port until the 1900s. Today, however, the canal is used mainly by pleasure craft, and Buffalo’s location within the Great Lakes’ Snowbelt has made the city languish. Buffalo is now thought to be just the US’ 76th most populous city and 46th most populous “urban area”. It is the snowiest in the top 100.

buffalo winter.jpg

Buffalo

6. Welland 

Welland.png

While the Erie Canal was America’s most important, the Welland Canal was and continues to be Canada’s. Whereas the Erie Canal is nearly 600 km long, the Welland Canal is only 43 km. But in order to bypass the Niagara Escarpment between Lake Ontario and Lake Erie, it covers almost as much elevation as Erie’s does. The city of Welland (population 52,000) sits on an oval-shaped island formed by two branches of the canal, one in use (approximately 3000 ships use it each year) and the other branch not.

Because it is still used for shipping, the eastern branch of the canal in Welland is crossed only by two lift-bridges and two tunnels. Most of Welland remains next to the canal’s western, recreational branch (which was used from 1932, when it was built, until 1973, when the eastern branch was added). The western branch is less of an impediment to road traffic than is the eastern branch, since the western branch is crossed by seven bridges that do not ever need to be raised in order to let ships pass beneath them.

Welland is the largest island city in Ontario, and the largest one in Canada (I think) apart from Montreal, St John’s, Victoria, or Nanaimo. The city is 70 km from Toronto by air, 110 km by land. Downstream from Welland is St Catharines, upstream is Port Colborne (population 18,000).

Map_of_the_Welland_Canal.png

Welland Canal

 

7. Grand Island 

Grand Island.png

20 km east of Welland, back on the US side of the border, is another small island city, Grand Island (population 20,000). It is located on a circularly-shaped island roughly 10 km in diameter, which is linked, by two bridges, to Buffalo in the south and to Niagara Falls in the north. Yet no bridges link Grand Island to either Canada in the west or to Tonawanda (population 100,000) in the east. While Grand Island is only around the 140th largest island in the United States terms of area, it is in the top ten in terms of island populations.

The circular shape of the island might perhaps also prove significant — circles are, at least in theory, the most efficient shapes to build cities within. Grand Island also gets less snow per year on average (82 inches) than nearby Buffalo (95 inches), but more than nearby Niagara Falls (76 inches). Finally, Grand Island is next to the large hydroelectric dams at Niagara Falls. These have made New York the largest hydro producer in the country behind only Washington state and Oregon —without even counting the 45 percent of Niagara hydropower produced in Ontario.

falls.jpg

The Falls

 

8. Rochester 

Rochester.png

Much like Buffalo, Rochester (population 210,000) is an Erie Canal city in the Snowbelt. It gets 100 inches of snow per year on average, more than any city in the US with a population of 100,000 with the exception of Syracuse (124 inches of snow; population 140,000), 120 km to Rochester’s east. The only other US city which comes even close to Rochester in terms of both size and snow is Erie, Pennsylvania (101 inches of snow; population 99,000). The future of all these Snowbelt cities may be tied to questions such as: “will smarter cars and trucks allow driving on country roads during a snow squall to become less dangerous?”, or “will aging Baby Boomers take up cross-country skiing en masse?”

Rochester, unlike Syracuse or Buffalo, is a middle-of-the-lake city: Lake Ontario stretches approximately 150 km to Rochester’s east and 175 km to its east. It is a bit of a crow-flies city vis-a-vis Toronto (150 km vs 250 km). But across the lake from Rochester there are no major Canadian cities. There are only smaller cities, such as Cobourg, Belleville, Oshawa, and Peterborough. Rochester is not the biggest middle-of-the-lake city on the Great Lakes; it is second to Milwaukee (population 600,000). However Rochester is the biggest mid-lake city within the Snowbelt, ahead of others like Sudbury, Erie, and Grand Rapids.

Rochester New York Skyline.jpg

Rochester

 

 

9. Ovid

Ovid .png

Many of the cities in upstate New York were given Classical names. Of the 20 most populous cities in the state, five fit this bill—Syracuse, Utica, Troy, Rome, and Ithaca. The tiny town Ovid (population 600), which along with Romulus (4,000) is one of the two seats of Seneca County, fit the pattern too. Though it is very small, and located 62 km from Lake Ontario, Ovid arguably deserves our attention here anyway. This is because of Ovid’s position between New York’s largest “Finger” Lakes: Cayuga Lake and Seneca Lake.

With the exception of Lake Michigan, Cayuga and Seneca are by far the two lengthiest, and most voluminous, lakes that lie entirely within the northeastern United States. Ovid sits at an elevation roughly 100-150 metres above the surface of the lakes, roughly five km from shores of the two lakes and 30 km from both the northern and southern tips of the lakes.

Ovid is different from all of the larger cities in the Finger Lakes region, such as Ithaca (where Cornell is located), Auburn (population 28,000), Geneva (13,000), Seneca Falls (located on the canal that links both lakes to the Erie Canal), or Canandaigua (11,000). Unlike Ovid, all of these cities are located by the tips of the lakes, rather than by their middles.

The reason for this is partly because the tips of glacial lakes like the Fingers tend to be where lowlands are located: unlike Ovid, none of these cities sit at elevations that are tens of metres above lake-level. Mostly, however, these cities are located at the tips of the lakes for the same reason that Toronto, Chicago, Detroit, and Cleveland are located at or near the tips of the Great Lakes. Cities in the middle of lakes have fewer directions available for roads.

Thus Ovid faces a similar question to that faced by most of the other cities we have discussed thus far: can crossing its adjacent lakes become easier? Cayuga and Seneca lake are both only around 5 km wide in most areas, and in many places are far narrower than that. Were Cayuga, Seneca, and the other Finger Lakes to become easier to cross, a place like Ovid might become one of the more unique and interesting locations in the US.

Ovid is also a minor crow-flies city, vis-a-vis both Toronto (235 km vs 325 km) and Syracuse (65 km vs 90 km). And in addition to being a middle-of-the-lake town in relation to both Cayuga and Seneca, it is also, in a sense, a middle-of-the-lake town for Lake Ontario. It is only about 80 km away from Rochester, and 135 km south of areas in Ontario.

the-statler-cornell-university-hotel-ithaca-new-york-1-top.jpg

Ithaca, NY

 

10. Watertown

Watertown.png
The final city on our list is the aptly named Watertown (population 28,000), which is a sort of mirror image of Hamilton (population 537,000), only a lot smaller, snowier, and not Canadian. Like Hamilton, it is located at the tip of Lake Ontario (though the eastern tip, not the western tip), has an excellent natural harbour, and is sandwiched between its harbour on one side and highlands on the other. But whereas Hamilton’s highland is  the top of the Niagara Escarpment, Watertown sits in the shadow of the much more formidable Adirondack Mountains.

Watertown’s nearest significant neighbours are the cities of Oswego (population 18,000) and the Canadian city Kingston (population 160,000). Watertown is a bit of a crow-flies town vis-a-vis Kingston: it is 50 km as the crow flies across Wolfe Island, but 90 km via  bridge.

More notably though, Watertown is an extreme Snowbelt city. The Watertown-Oswego-Adirondack region is the snowiest in the United States apart from Michigan’s Upper Peninsula, parts of the Rockies, and parts of Alaska. Watertown gets about a third more  snow than Buffalo or Rochester do, and nearly double the amount of snow that Toronto does. Areas in the western foothills of the nearby Adirondacks get even more: the town of Boonville (population 2,000), for example, 70 km southeast of Watertown, gets more than 200 inches of snow per year on average, making it perhaps the snowiest place in the US among towns or cities with at least 1,000 residents, excepting only Valdez, Alaska (population 4,000), Crested Butte, Colorado (pop. 1,500) or Hancock, Michigan (4,500).

Watertown is also just 200 km away, across the Adirondacks, from Lake Champlain, which is by far the largest lake in the United States east of the Great Lakes and north of Florida.

Winter-Aerial-BIG.jpg

Lake Placid, NY, in the Adirondacks

Standard
North America

Cable-Cars: The Third Way

So imagine it’s the wonderful future, and everyone has the option of being ferried everywhere by autonomous cars.

The places that were once parking lots have been converted into parks, shops, or homes; the places that were once useless archipelagos of land trapped within highway cloverleafs have been converted into vertical parking lots for autonomous cars, which are capable of holding far more cars within a given space than any traditional parking lot ever could.

Getting Around

Upon entering a car at the front door of one’s home, and perhaps after deciding whether or not to drive the car or let the car drive itself instead, passengers will be confronted with a choice of three basic transportation options:

The most expensive, but also simplest and most private, option is to travel directly by car to one’s destination.

The second most expensive, but generally fastest, option will be to travel by car to a train station, then travel by train to another train station and, if necessary, travel by another car from the station to a destination.  In this future, the middle lanes of many urban highways will be converted into surface rail lines, making trains more widely available. (Also, subway systems will likely continue to expand over time). After dropping off passengers at these highway train stations, cars will be able to drive on to the nearby vertical parking lots.

Finally, the cheapest but slowest option will be to travel by car to a cable-car station. Cable-car stations will often be located within highway vertical parking lots, and also directly above highway train stations. After travelling by car to the nearest one, passengers will ride a cable-car to the train station.

In some places, cable-cars will also diverge from the highway, in order to link the highway to nearby areas that would otherwise be hard to reach as a result of barriers like rivers, escarpments, or valleys.

These cable-cars will not be eyesores — as are some current urban cable-cars, such as London’s Thames River cable-car; and as a monorail would be — as they will travel low to the ground in the middle of wide highways, rising higher only on occasion, mainly to pass over bridges that cross over highways.

Cable-cars will be the third option, for those not in a rush who are looking for a cheap way to travel. Their main purpose will be to link highway parking lots with highway train stations. This will be useful given that highway train stations will be spaced quite far apart from one another (since building train platforms in the middle of wide highways will be relatively expensive), and given that many parking lots will be located within the otherwise difficult-to-reach archipelagos of highway cloverleaf intersections.

As a bonus, cable-cars will increase the overall transportation capacity of a highway by roughly 2-4 thousand people per direction per hour, as well as overcome any topographic barriers adjacent to the highway. They will be particularly useful for highways that run along the floors of valleys, as many urban highways do.

What About Without Autonomous Cars?

This future arrangement does not even necessarily require fully autonomous cars. Semi-autonomous cars would be sufficient:

So long as cars could function autonomously from, say, 4am-5am, and so long as cars could function autonomously within vertical parking lots (which, unlike traditional parking lots, would be able to fill almost every last cubic metre of their volume with cars), the system could work. Passengers could order a car,  and it would be delivered directly to their home overnight.

Standard