Uncategorized

Humans, Computers, and Telecommuters

Let’s discuss two sets of three: the land-labour-capital trinity of conventional economics, and the human-computer-telecommuter set that may soon become the three main categories of labour.

To state the obvious, the key relationship during the past generation has been the “capital” of North Atlantic economies (whether that capital be military power, technological innovation, or consumer demand), chiefly that of the United States, and the labour and “land” (most notably, the fossil fuels in that land) of Asia, chiefly that of the Chinese.

Even in recent years, this relationship between North Atlantic capital and Asian land and labour has arguably continued to intensify. Specifically, if we characterize “land” as being the type of energy production that has the greatest impact on local environments — if, for example, we define it as coal production, coal consumption, and the building of massive hydroelectric dams — then we can see that in recent years the employment of Asian “land” has continued to grow at a rapid pace relative to that of the North Atlantic economies.

This has been the result of a number of different significant trends: the growing “green economy” of Europe, the coal-to-gas electricity switchover in the United States that has been the result of shale gas production, the growth of coal and gas consumption in Japan as a result of Fukushima, the growth of hydroelectric power in China (though China’s coal industry growth has been flattening), and the growth of coal industries in southern Asia.

We know that poorer Asian populations in countries like China and India hold the weaker positions in this trade relationship. They supply the labour and “land” chiefly because the wealthier economies of the world mostly do not want to allow large-scale immigration or domestic environmental despoliation, yet are not able or charitable enough to furnish poor countries with capital wealth without demanding labour and natural resource wealth in return.

We also know that this global trade relationship might soon decrease to some extent, whether because of automation or protectionism in capital-rich countries, aging labour forces in Northeast Asia, or an attempt to reduce pollution in China.

The view of world trade decreasing because of automation and protectionism has become especially popular during the past year, because of political developments in both the US and China. Upon closer investigation, however, a reduction in trade may not actually be likely. The hitch here is the limitation of automation in wealthy economies. While computers and computer-run machines may now be excellent at doing tasks that humans are bad at — like being a grandmaster at chess or driving a truck for days without taking a pit stop — they are still terrible at a task that even human children find easy: manipulating objects.

The result of the limitation of automation may be the second set of three mentioned above: a human-computer-telecommuter division and cooperation of labour. Imagine, for example, an industrial or commercial site in the US that employs not only human labour, and not only machine labour, but instead a combination of a small number of on-site labourers, a large number of autonomous machines, and a large number of machines controlled by lower-wage labourers working remotely from poor locations in foreign countries.

In one sense, every party involved would gain in this relationship: rich countries would gain access to cheap labour without needing to outsource, poor countries would receive wages, and both would be allowed to harness the productive power of machines without having to wait until robotic technology is good enough to allow machines to replace labour altogether. Or without having to deal with the economic and social consequences of that day finally coming.

On the other hand, “telecommuters” might further income inequality within wealthy countries, by forcing labourers in those countries into even closer competition with labourers in poor countries. Moreover, it might make it more difficult to ignore the unfairness that exists as a result of real wages in rich countries far exceeding those of poor ones.

The effect of telecommuting — which includes, but is not limited to, a worker being able to control a machine that is located thousands of kilometres away — may be to make labour much more easily tradable across long distances. Since “capital” is easily tradable too, this may leave “land” as the odd man out. Land considerations, for example the location of cheap and/or clean electricity, or of ports capable of importing natural resources from abroad, may therefore become more important, at least relative to labour considerations, when choosing where to locate a new industrial or commercial site.

A place like Iceland, for example, which has abundant and clean power, difficulty in exporting that power directly because of its island location, ports proximate to North America and Europe, and yet no real labour force to speak of, could use a combination of autonomous and remotely-controlled machines to become a major industrial or commercial production site. A similar thing may be true of economies like Quebec, Norway, Manitoba, or British Columbia.

Remote-controlled machines do not get very much press — even if you Google it, you will probably not find much, with the exception of medical tele-surgeries — when compared to discussions of a far future in which widespread, wholly autonomous machines run the labour force. What is so scary, or exciting, about the possibility of remote-controlled machines, and of telecommuting labour forces in general, is that we may not have to wait until the far future for them to become widespread.

 

 

Advertisements
Standard
North America

North Side, South Side: Real Estate in the Greater Golden Horseshoe 

Toronto-Hamilton-Buffalo Populations

The horseshoe-shaped region that includes Toronto and Buffalo is one of North America’s most populous, with more than 10 million inhabitants.The Horseshoe’s northern half extends roughly 100 km from Oshawa in the east to Burlington in the west, and 50 km from downtown Toronto north to Newmarket. The Horseshoe’s southern half is also close to 100 km in length, from Hamilton in the west to Lockport in the east. It is 50 km from the St Catharines-Niagara area south to Buffalo.

Greater Golden Horseshoe .png

Golden Horseshoe in North America.png

In order for us to analyze real estate in this region, we first need to discuss three basic differences between the Horsehoe’s northern and southern halves: political, geographical, and historical differences.

Political 

The political distinction is the most obvious of these. Whereas the northern half is entirely within Canada, the southern half is split between a Canadian side and an American side. The Canadian side of the southern half is home to roughly 1 million people, of whom 550,000 live in Hamilton. The American side is home to 1.2 million people, most of whom live in the suburbs of Buffalo. The international border runs directly through the Niagara-Buffalo urban area, making it by far the most populous urban area shared by the two countries with the exception of Detroit-Windsor:

US-Canada border cities.png

US-Canada Border Cities

 

us-can 50

Geographical

There is also a geographic difference between the Horseshoe’s northern and southern halves. Namely, it is that the Horseshoe’s southern cities are characterized by their relationship to water and to wind:

  1. Hamilton’s significance comes historically from the city’s harbour, which is by far the largest in the western half of Lake Ontario. The harbour facilitated shipments of bulk goods, helping Hamilton to become Canada’s Steeltown. It continues to host Canada’s largest Great Lakes port.

    Hamilton port

    Hamilton.png

  2.  The St Catharines-Niagara urban region, which is the 12th most populous in Canada, derives its significance from two water features. One is Niagara Falls, which draws both tourists and hydropower. The other is the Welland Canal, which connects Lake Ontario to the other Great Lakes via a series of locks, bypassing the Falls. Niagara Falls was the site of the world’s first major hydroelectric station, built in 1895. It continues to generate more power than any single dam in the United States. The Welland Canal was first built in the 1820’s, and is a key link in the St Lawrence Seaway shipping route that was opened in the mid-twentieth century.

    Welland Canal

  3. Upstate New York was shaped by a canal too: the Erie Canal. The canal is the main reason why Buffalo, Rochester, and Syracuse were able to grow as cities despite the heavy snowfall they receive (they are, by some estimates,  the three snowiest major cities in the world, outside of cities in Quebec, Newfoundland, or Japan). In the present day the canal is used primarily (but not entirely) by pleasure-craft. However during its heydey in the nineteenth century it was one of the most economically significant waterways in North America.

erie canals.png

snowiest cities.png

Average Snowfall; Source: Current Results

Snow in upstate New York comes mainly from winter winds blowing atop the relatively warm water of the Great Lakes. Because of these wind patterns, Buffalo actually receives twice as much snow per year on average than does Toronto. Indeed Buffalo gets more snow than any of Canada’s 18 most populous cities (a lot more snow, in most cases), with the exception of Quebec City.

Buffalo and Rochester are located in the middle of a “snowbelt”, which extends from Cleveland’s eastern suburbs all the way to the Adirondack Mountains east of Lake Ontario. The only other snowbelt cities with more than 100,000 inhabitants are Sudbury, Barrie, Syracuse, and Grand Rapids.

Great_Lakes_Snowbelt_EPA_fr

While Hamilton lies outside of any snowbelts (it gets the same amount of snow as Toronto, on average), it too is impacted by wind, being hit by among the most windstorms of any Canadian city:

windiest cities

Historical 

Today, the Greater Toronto Area has an estimated 6.4 million inhabitants. The southern side of the Horseshoe (Hamilton + the Niagara Region + the Greater Buffalo Area) has just half that, 3.2 million.

A little over a century ago these positions were reversed. Back in the late nineteenth century Buffalo’s population was more than twice as large as Toronto’s. In 1900 Buffalo was the eighth largest city in the US, and the fourth largest without an ocean port. Even Hamilton was not much smaller than Toronto in those days:

Toronto-Hamilton-Buffalo Populations.png

Relative population sizes; Toronto = 100

There are a number of reasons for this historic reversal, but they all have to do with the price of energy:

  1. Oil
  2. Automobiles
  3. Air Conditioning

oil prices historical.png

Cheap oil in the twentieth and late nineteenth centuries, and the technological advances of automobiles and air conditioning that cheap energy helped to make feasible, resulted in the decline of Buffalo and Hamilton relative to Toronto.

-Home air conditioning began to become widespread in the middle of the twentieth century. Not surprisingly, it led many Americans to move from cities like Buffalo to the Sunbelt. An estimated 28 percent of Americans lived in the Sunbelt in 1950; 40 percent did in 2000.

-For Sunbelt cities in the arid American Southwest, cheap energy was also necessary to ensure freshwater supplies, given the energy-water nexus. And for cities in the western half of the United States in general, cheap energy was needed to facilitate long-distance intercity transportation.

-Cheap oil also allowed land transportation — trains and automobiles — to supplant water transportation. Water transportation is far more energy-efficient than any other type of transportation, but it is also slow and inconvenient. With land transportation becoming dominant during the twentieth century, the importance of cities which were based around water transportation declined. Buffalo and Hamilton were two such cities.

-Buffalo and Hamilton were also not ideally suited to land transportation. For the Niagara peninsula, Lake Ontario and Lake Erie serve as transportation barriers for cars, trucks, and trains; so too does the Niagara Escarpment, which divides the peninsula (and Hamilton) into upper and lower segments. For Buffalo, lake-effect snow also frequently serves as a severe transportation barrier.

Toronto, in contrast, has been able to use automobiles and low energy prices to expand  approximately 50 km deep into its GTA suburbs to the east, west, and north. Because it is a Canadian city, Toronto has also not had to worry as much about people moving south to the Sunbelt, as Buffalo has.

 

Speculating About The Future

Since we do not know what future energy prices will be, prudence suggests that we should prepare for the worst: high prices. Indeed, it seems far from implausible that high prices will become a reality, whether because of carbon pricing or because of a diminishing supply of “conventional” oil. Even in spite of the current shale oil boom in the US, few people have predicted a repeat of the low prices of the 1990s or the 1880-1970 era.

If energy prices do become high, the Golden Horseshoe may look more like it did in the late nineteenth century. Just like how cheap energy allowed the Greater Toronto Area to grow relative to Buffalo and Hamilton, so might expensive energy allow Buffalo and Hamilton to grow relative to the GTA. Similarly, what growth the GTA does experience in an energy-expensive world would be likelier to occur mainly within the City of Toronto, rather than in the GTA’s sprawling suburbs as has occured in recent decades.

At the same time, we can also expect technology to have an effect on the region. In the last century new technologies like automobiles and air conditioners had the largest impact. But how will today’s new technologies – digital technologies – impact the Golden Horseshoe?

One impact of digital technology is likely to be that computers and machines will allow more work to be outsourced or automated. As such, people’s leisure time will increase faster than will their disposable income. From a transportation perspective, this will probably benefit water transportation, which is the cheapest but also the slowest form of transportation. Only someone with a limited budget and a lot of free time would find travelling by water useful; especially if they are trying to avoid carbon emissions.

In particular, water-based shortcuts could become popular. It is just 47 km from St Catharines to downtown Toronto by water, but 113 km by road. Given that ferries are already more energy-efficient than automobiles or even trains on a km-by-km basis, having such a significant shortcut could be highly useful. Buffalo is in a somewhat similar position: it is 93 km from Buffalo to downtown Toronto as the crow flies, but 161 km by road.

Greater Golden Horseshoe

Technology could also make intermodal transportation more convenient. For example, one lesson of the failed Toronto-Rochester ferry was the importance of the “first-mile/last-mile” challenge. Because downtown Rochester is over a dozen kilometres inland from its ferry port, and because downtown Toronto did not have good transit ties to its own ferry port in the Portlands, the ferry was not very useful. The ferry had to reserve most of its space for cars rather than for passengers, so that passengers could drive to and from its ports. The cars also accounted for most of the weight on the ferry, reducing the ferry’s energy efficiency.

With new technologies, however, such as car-sharing services or even self-driving cars, the challenge of getting to and from the ferry port could be eliminated. The ferry would no longer need to be a car-ferry.

More leisure time could also help cities like St Catharines, Welland, Niagara Falls, and Buffalo. It is difficult for cars to cross the Welland Canal because, given the large ships that use the canal on a frequent basis, the only bridges allowed over the canal are lift-bridges. Traffic backups frequently ensue when the lift-bridges are raised. This is why urban development in St Catharines, Welland, and Port Colborne has been mostly limited to only the western side of the canal.
Welland Canal

If people have more free time, however, they may not mind waiting as long — particularly if their car is driving autonomously while they are waiting. A similar thing is true for waiting in a long line of vehicles to cross the US-Canada border.

Autonomous vehicles could be useful in other ways as well.  In areas where human drivers face difficulty or delay, such robots could be highly useful. For example in upstate New York’s snowbelt, cars and trucks with high-tech safety features could be a game-changer for transportation during the winter.

So too could autonomous snowplows. Snowplow drivers are expensive to employ, given that it takes a long time to plow snow and given that they are often hired to work in the wee hours of the night. Autonomous snow cleaners could also help a lot in hard-to-reach places where snow can be very damaging: on rooftops.

Autonomous trucks could also help Buffalo and the Niagara Region by making it cheaper to cross the US-Canada border, where currently it is often expensive to pay truck drivers to wait in long, slow border lines.

Autonomous cargo ships could benefit this region too. They could allow for smaller vessels to be used on the Great Lakes at times when they would otherwise not be employed, such as at night during the winter. They could help save on labour costs for ships traversing the Welland Canal, which because of its locks takes around 10 hours to cross despite being just 43 km in length. They could also save on labour costs on the Erie Canal, which takes over a week from Buffalo to New York City and cannot be used by very large ships.

Finally, cargo shipping on the Great Lakes and their canal systems could be used more because of autonomous machines loading and unloading containers, thereby saving on labour costs and so perhaps allowing intermodal transportation to become competitive even for relatively short-distance water shipping.

Horseshoe

Conclusion

If a world of high energy prices and even higher technology does come into being, it might have three major effects on the Golden Horseshoe. First, it would be likely to cause the Horseshoe’s southern half to grow more quickly than its northern half. Second, it would be likely to cause the City of Toronto to grow more quickly than its surrounding suburbs. And third, it would be likely to cause Toronto to become more connected to the Niagara-Buffalo region, via Lake Ontario’s shortcuts.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standard
East Asia

Geopolitics within China

The year 2017 has short, medium, and long-term significance in China.

Its short-term significance comes from the Communist Party’s quinquennial leadership transition, which is being held a week from today.

Its medium-term significance comes from being the twentieth anniversary of the most recent notable geopolitical transition in China; namely, of Hong Kong leaving the British to join (in effect) China’s largest province Guangdong, and of Chongqing leaving China’s formerly-largest province Sichuan, in 1997*.

Its long-term significance comes from being the 100th anniversary of the Russian Revolution; of which, with the Soviet Union now long gone, the Chinese Communist Party is the only major remnant. The Party’s centennial is itself arriving in 2021, the first deadline in Xi Jinping’s “Chinese Dream”.

It is interesting to think on how these factors may overlap. The Russian Revolution of course brings to mind the Soviet collapse. That collapse occured 69 years after the Soviet Union’s formation; next year will be 69 years since the People’s Republic of China’s formation. These memories may be reenforcing the desire of China’s leadership to avoid the mistakes they perceive Gorbachev to have made. In a small way, this might be contributing to the Party’s granting more power to Xi Jinping. The promotions Xi makes this week are being watched closely, worldwide, as a yardstick of his clout.

Geopolitics within China 

The twentieth anniversary of the political changes to the Hong Kong-Guangdong and Sichuan-Chongqing regions are, arguably, deeply relevant to this issue.

First, the two men Xi is expected to highlight as long-term successors of himself and of Premier Li Keqiang currently lead those regions. Chen Min’er is the party chief of Chongqing, Hu Chunhua is the party chief of Guangdong. Both will have an incentive to keep their regions pliant, in order to realize this rise to the top.

Second, the strongest moves in Xi’s anti-corruption campaign have been taken against top leaders in the Sichuan-Chongqing region: against Sun Zhengcai, party chief of Chongqing, a few months ago, and against Zhou Yongkang, a former chief of Sichuan, in 2015. Sun will be the first Politburo member kicked out under Xi. He will be just the third incumbent Politburo member to fall in the past 20 years, and yet the second party chief of Chongqing (the other being Bo Xilai, in 2012) to do so.

Third, Guangdong and Sichuan are by far the largest of China’s “peripheral” provinces (see graph); provinces outside of the part of China that, roughly speaking, lies between or near Beijing and Shanghai. Few recent Chinese leaders have been born in peripheral provinces; the new Standing Committee that Xi is expected to pick will not have anyone born in a peripheral province. Neither was anyone on the current Standing Committee* born in a peripheral province. Indeed, nobody born in Guangdong or Sichuan holds any of the 43 positions within the Communist Party’s Politburo, Secretariat, or Central Military Commission.

China's Peripheral Provinces

Read the full article here: Geopolitics within China

Standard
Uncategorized

Call for Submissions: “Robots & _______”

Hey all, I’ve never tried this before, but I’d like to try crowdsourcing the content on this site a bit. Specifically, I’m looking for peoples’ articles that have the title “Robots & ______”.

So far, we’ve got three articles on the topic:

Robots & NHL Expansion
Robots & the Middle East

Robots & Ontario’s Minimum Wage

Ideally, I’d like people to send in more of their own articles (any word count you want!), so I can put all of them together to create a series on how robots might impact various aspects of our world.

I look forward to reading your ideas — thanks y’all!

Standard
North America

Upstairs, Downstairs

With the US being a 17 trillion dollar economy, it can sometimes be easy to forget that both of its neighbours, Canada and Mexico, are in the trillion dollar club as well. Canada is the 10th largest economy in the world by nominal GDP and 17th by purchasing power parity (PPP)-adjusted GDP; Mexico is the 15th in the world by nominal GDP and 11th when adjusted for purchasing power parity. Outside of the US or EU, Canada and Mexico are already the two largest economies in the world within the same trade bloc. With continued decent GDP growth—both are expected to grow 2-3 percent in 2017—they may soon overtake more EU economies in size too:

trade bloc pairing comparisons

And yet, as the NAFTA renegotitation begins its second round of formal talks this week, the trade bloc shared by Canada and Mexico may to some extent now be on the chopping block. Not surprisingly, the two countries are now attemtping, diplomaticaly, to stand shoulder to shoulder with one another; to present a unified front to the US. But this can be hard to do, especially when those shoulders are separated by a few thousand km of US territory. It may be,  then, that the US will divide and conquer them (economically speaking) and get the best deal for itself.

Read the full article: Upstairs, Downstairs

Standard
North America

Demographics, Drivers, and Dreams

On The Future of the Canadian Auto Sector 

There is a profound difference between Canadians, Americans, and Chinese, both in their demographics and in their dreams.

In the US, the largest population group is 20-35 year olds. Many of these Americans will, in the years ahead, be looking to pursue the American Dream: to buy a home and start a family. Indeed, just like the Baby Boomers before them, many of these Millennial Americans have been moving to suburbs and buying SUVs. 

In Canada, in contrast, the largest group is 50-60 year olds. In the years ahead, many of these Canadians will be looking to cut back their work hours, or retire, or transition from manual labour to less physically strenuous jobs. Many will also pursue the Canadian Dream: having a cottage to host one’s grandchildren at.

In China, the largest group is 40-55 year olds. Most of this group works in physically demanding industrial or agricultural jobs. Most of them, particularly in China’s rural areas and inland provinces, still earn between 2-10 dollars a day. The Chinese Dream is to let these aging manual labourers transition to less strenuous work, while also bringing the country’s impoverished rural areas and inland provinces out of poverty.

Ontario’s Position

These demographic trends are not alien to the auto sector in Ontario. A city like Windsor is, in a certain sense, situated in a delicate borderland, between the vast American consumer market on the one hand, and the smaller domestic market of Canada but larger global market on the other hand. This is a risky, though often rewarding, position to be in. When successful, it has allowed Ontario to attract investment from global firms seeking a way to access to the American market without investing too much in the US directly. In the wake of the recent Valiant deal, such investment is increasingly expected to come from China.

Obviously, however, global firms cannot rely for certain on continued favourable access to the American market, regardless of whether or not these firms have investments just across the US-Canada border within Ontario. It is up to Ontario to determine to what extent it wants to orient its production around markets in the United States, and to what it extent it wants to focus on Canadian or global consumers instead.

Motor Vehicle Production

A Possible Divergence

This is where trends such as demographics become relevant. As a result of such trends, it may be the case that consumer demand in the United States will diverge sharply from that of countries like Canada and China in the years ahead. While Americans continue to buy cars and SUVs, in Canada and in global markets it may be instead that auto sector demand will become increasingly dominated by busses and by trucks:

1. The Supply of Drivers 

The global Baby Boomer bulge, of 50 and 60 year olds in the West and of 40 and 50 year olds in China, is likely to create the largest labour shift in human history: manual labourers transitioning to less strenuous work. In spite of what some politicians may claim, these labourers will not often be retrained to become software engineers. Nor will they all move into retail jobs at companies like Walmart, as out-of-work labourers have often done during the past generation. Too many of these retail jobs are being automated out of existence. Rather, the single biggest job these labourers are likely to switch to is driving a motor vehicle.

Not only is driving a bus, truck, or taxi something that can be done by a person who has, say, a bad back, it is also becoming far less strenuous than ever before, as a result of technological additions to modern vehicles. Driving large busses and trucks has been somewhat difficult in the past, particularly in tasks such as parking, turning, or driving on country roads during challenging weather conditions or in the dark of night. Modern vehicles, on the other hand, equipped with cameras, sensors, and high-tech safety features, are in the process of making the job of driving relatively comfortable and safe even for 60 or 70 year olds.

If the Baby Boomers create a glut of drivers globally, the costs of using trucks, busses, mini-busses, etc., will fall.

2.  The Night Moves

Of course, there has also been plenty of discussion in the media about the possibility of self-driving vehicles. If such vehicle actually do become commonplace anytime soon, they will have the largest impact on places and at times in which there is today a scarcity of human drivers. Namely, they will the largest impact on late-night driving (when human drivers are mostly asleep) and on areas such as, for example, Canada’s far northern regions, where — particularly during long, cold winter nights, or in snow storms, or on dangerous ice roads that require almost constant maintenence  — there are few human drivers around.

Autonomous capabilities would have a much greater impact on trucks than on cars, then; and in particular, on short trucks, where labour costs per unit of cargo are much higher than for heavy trucks or transporters. They would also have a greater impact on places with challenging geographies, such as Canada. And they would be especially useful for slow-moving overnight vehicles, like plows, de-icers, and pavers.

Trucks, finally, may experience the benefits of autonomous driving earlier or more than other vehicles  will as a result of government regulation. While governments may be hesitant to allow autonomous cars in general at first, they are far more likely to allow a truck driver to turn on an autonomous cruise control system late at night, when relatively few cars are on the road, so that he or she can get some sleep.

3. More Time, Less Money 

These two trends we have discussed thus far — demographics and automation — may also lead to a phenomenon in which Canadians’ free time will increase at a much faster pace than will their income levels. This could occur because of an aging Canadian worker entering into full or partial retirement, or it could occur because of a Canadian worker losing his or her job to a software system or machine. Either way, Canadians are likely to have more time to fill up their schedules with leisure activities — say, spending more time in cottage country — but will also have to economize on costs in order to afford them.

One way to economize on leisure spending would be to forgo car ownership (or at least, to share a car with a spouse instead of owning two cars per couple) and using transit more. Busses, for example, are slower than cars — as they often make stops to pick up and drop off passengers along their routes —  but also cheaper than cars, particularly once you factor in the cost of car ownership. If the cost of bus drivers declines (which, as we have discussed above, we think it will), busses would become cheaper still. As Canadians’ free time increases faster than Canadians’ incomes, busses might therefore see greater use.

4. The Transit Revolution 

Apart from their sometimes being slow compared to cars, another major reason many people do not use transit regularly is because of the “last-mile” problem: how to get from a transit station to one’s destination, without a car. Also problematic is the “first-mile” problem: how to get to the transit station if the station’s parking lot is full, or if you do not own a car.  Yet these “first-mile/last-mile” problems are likely to be solved—or at least, made far less problematic—in the near future, as a result of technological changes.

One technology to overcome the first-mile/last-mile challenge is that of services like UberPool, wherein passengers and drivers easily co-ordinate door-to-door carpools through their smartphones. This same system could be used by busses or mini-busses too, which would make the rides cheaper but also longer—see the More Time, Less Money section above. Systems like UberPool work best in markets that are “liquid”; i.e. big-city markets, where there lots of passengers and drivers around. The US, being highly suburban, may be less suited to this than Canada (where more people live in large cities) or most global markets.

Another way to overcome the “last-mile” challenge is via car-sharing services, such as Car2Go or Zipcar. These allow people to take a car from the transit station to reach their destination. Use of car-sharing services in Canada is growing. It may eventually make it easier for some people to forego car ownership entirely.

As services like car-sharing and ride-sharing advance, then, transit’s “first-mile/last-mile” problems may be overcome.

5. The Canadian Shield 

If transit really does become more common relative to car usage, it will in many places be dominated by rail transit. Similarly, railways will continue to transport more freight than trucks. Trains are, after all, more efficient than trucks and busses. They will remain more efficient even if the cost of hiring a bus or truck driver falls.

Where trucks and busses will be utilized most, then, is in locations where it is difficult for railways to function. We have already mentioned one location where railways are difficult: Canada’s far north, where permafrost impedes rail construction and maintenance, and ice roads are sometimes the only economical option.

Another region where railway construction is expensive is the Canadian Shield, the result of the Shield’s enormous size, exposed rock shelves and over-abundance of lake (the latter being proble  matic given that trains cannot easily make sharp turns to bypass them, as trucks can). If Canadians, armed with more free time than ever before, seek the Canadian Dream in the lakeside cottages of the Shield, they will have to rely on trucks to transport bulk necessities like food (as the Shield is not suitable for agriculture) and fuel.

Canadian Shield .png

Railways networks are also under-built in mountainous areas, as trains cannot handle either sharp turns or steep inclines well. Three of Canada’s four major cities — Vancouver, Montreal, and Calgary — are located a very short distance from mountains, in contrast to US population centres which tend to be located in spatious coastal plains or the even larger Midwestern/Central Plains. It might be expected that, as a result of having more free time to spare, Canadians will spend more time pursuing leisure activities in mountains.

Meanwhile, countries like China are now actively trying to develop their impoverished inland regions, many of which are mountainous and have relatively little access to either railways or to coastal shipping—and will therefore have to rely on trucks and busses for their transportation. Many other developing economies, in South Asia, Latin America, and Africa, are also mountainous and landlocked. The largest city in NAFTA, Mexico City, is the highest-elevation in the world among cities with at least four million residents. Still, it is China which is the king of highlands. China’s Tibetan Plateau and Himalayan region occupies roughly one-fifth of China’s landmass, and is similar to the Arctic in its permafrost risks, sparse population (it has less than one half of one percent of China’s population), low rail access, and resource wealh.

Conclusion — Canada and the World 

Canada typically has one foot in the American market and one foot in the Canadian and global markets. Canadians companies often wonder what trade regulations or barriers the Americans will insist upon, either for Canadian firms or for foreign-owned firms invested in industrial facilities within Canada. But if, also, markets diverge — if Americans continue to use conventional four-seater cars and SUVs and trains, while Canadians and global market players like China increasingly look to buy busses and trucks — then Canada’s auto sector could also have to answer a more basic Canadian question: just how American are we?

As usual, there are no easy answers here, only risks and rewards.

Standard
East Asia

The Geopolitics of Chinese M&A

According to an article in The Economist, the value China’s outbound M&A activity rose sharply in 2016, up approximately fivefold since the summer of 2015 and eightfold above its average rate between 2010- 2015.

The article mentions that this increase could represent a troubling trend for China, of capital fleeing the country in response to its slowing economic growth rate and gradually depreciating currency in recent years.

It then largely dismisses this theory, however, saying, “rather than sparking a stampede [of money] to the exits, it is more accurate to say that these changes [in China’s economic performance] have alerted Chinese firms to the fact that they are still woefully under-invested abroad. China’s share of cross-border M&A has averaged roughly 6% over the past five years, despite the fact that it accounts for nearly 15% of global GDP”.

In other words, the article assumes that, if  a country’s share of global M&A does not exceed its share of global GDP, its M&A is less likely to be capital flight. This assumption is not justified, however. It overlooks other key factors that may determine a country’s propensity for engaging in outbound M&A. Such factors include:

1. A country’s physical proximity to other large economies

In order to have cross-border M&A, you need borders to cross. Economies with large neighbours, for example Canada or the Netherlands, tend to have a relatively high propensity for engaging in international M&A.Canada’s cross-border M&A, for example, has tended to be 25-50% as large as the US’s in recent years, in spite of the fact that Canada’s GDP is less than 10% as large as that of the US. China, unlike Canada, does not border any large economies. This impacts not just its M&A, but also trade: in China trade counts for 37% of GDP, whereas in Canada it is 64% and in the Netherlands it is 151%.

2. A country’s cultural and linguistic affinity with other large economies

Most economies in the world speak European languages; Northeast Asia remains something of a linguistic outlier. This may make Northeast Asian countries less likely than other regions to engage in global M&A.  Japan, for instance, currently accounts for 6.5 percent of global GDP, yet has accounted for less than 1 percent of global inbound M&A in recent years, and less than 4 percent of cross-border M&A in general. Arguably, China too might be expected to have a low propensity to engage in M&A.

3. Capital availability versus investment opportunity

One of the reasons that Japan’s outbound M&A far exceeded its inbound M&A is that capital in Japan has been cheap (its interest rate is below zero), yet investment opportunities in Japan have been limited (its economic growth rate is 1 percent). Thus, the Japanese borrow money cheaply at home, and often invest it abroad. In China, however, interest rates frequently top 4 percent, while economic growth is estimated to be 6-7 percent. We might, then, expect China to be less M&A-intensive, and generate more of its own investment opportunities domestically rather than seek out ones in foreign markets. Unless, of course, as many economists suspect, China’s true growth rate is much below 6-7 percent.

4. A country’s political relationship with other large economies

Outside of mainland China itself, approximately 45 percent of East Asia’s GDP is generated in Japan, China’s historic regional rival. Outside of mainland China, approximately 29 percent of global GDP is generated in the US, China’s potential global rival. Because China’s relationship with Japan and the US is sometimes a tense one, its investment relationship with Japan and the US may be less than it could otherwise be. For instance, when a territorial spat between China and Japan, over the Senkaku/Diaoyutai islands, heated up (rhetorically) around 2012, cross-border M&A between China and Japan fell sharply. Indeed, in spite of relatively close cultural connections, Japan was not even one of China’s top ten targets of outbound M&A spending in the past decade. China has tended to invest in Europe; Japan in its political ally the US. 43 percent of Japan’s outbound M&A in the past decade went to the US.

5. A country’s relationship to foreign financial hubs

Relatively independent financial hubs, like Hong Kong, Singapore, or Luxembourg, tend to be significant net providers of M&A capital. Their outbound cross-border M&A spending tends to far exceed their inbound M&A, and their global share of cross-border M&A tends to far exceed their global share of GDP. From  2011-2014, for example, Hong Kong’s outbound M&A was about 25-40% as large as mainland China’s, even though Hong Kong’s GDP is only around 2% as large as mainland China’s. (Rightly or wrongly, M&A statistics tend to treat Hong Kong as if it was an independent entity). The fact that the world’s top two financial city-states (Hong Kong and Singapore) are Chinese may suggest that mainland China’s propensity for outbound M&A should be relatively low—just as, for example, US outbound M&A would plummet if (hypothetically) Manhattan were to secede from the US.

The value of China’s outbound M&A as a share of global cross-border M&A should, perhaps, be lower than China’s share of global GDP, then. Yet in 2016 Chinese buyers accounted for an estimated 15 percent of the value of all cross-border M&A, slightly higher than the 14.5 percent of global GDP China had. The Syngenta deal alone, announced in early 2016, was roughly large enough to eclipse all outbound Chinese M&A in any year prior to 2014.  China has kept up its M&A pace thus far in 2017, not counting Syngenta.

The explanation that you often hear for why China’s M&A boom is not capital flight — namely, that Chinese firms are seeking foreign expertise and technology, as China transitions to a more knowledge-intensive economy — may have some merit, but still it ignores the fact that money has also been pouring out of China into other assets in the developed world in recent years. To take the most notorious example, Chinese capital been pushing up real estate values in Pacific cities (Vancouver, Seattle, Sydney, etc.) and hub cities (NY, London, Toronto, etc.). The M&A boom, then, may be part of the greater trend of Chinese capital seeking safe haven. China’s 2016 M&A investment in the global safe haven, the US, was roughly triple what it had been in 2015, 2014, or 2013. It was larger than in every year from 1990-2012 combined.

If much of China’s M&A boom really is a result of capital flight, it is also likely to be unsustainable. In part two of this article we will analyze China’s geopolitical structure, to see when (or whether) this boom will end.

Standard